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Matter tells SpaceTime where to curve and SpaceTime tells Matter how to move.

1 Contravarient Transformation

Consider a cartesian coordinate system of d dimensions (x!, 2, ...,2%). Also, consider another curvilinear coordinate

system y', ... where y’s is a function of 2’s

For a very small displacement, transformation equation is,

B 8yn

n _ m Nl
dy D dz (1.1)

For a Vector A",
An(y) = 2% gmiy (1.2)

Similarly for a Tensor 7" such that 7" = A" B® the transformation equation is given by,

oy™ oy™ .. oy™ dy™
— A"BS = ZJ s
ox" O0xs ox" Oxs

" (y) () (1.3)

Any Tensor which transforms as (1.3) is called a Contravarient Tensor.

1.1 Insights

Contravarient Transformation is similar to transformation of a small differential element.

oy™
d m — d n
Y ox" v
oy™
Vm — V’I’L
() = ZV(@)
2 Covarient Transformation
Consider a cartesian coordinate system of d dimensions (z!, 22, ...,2%). Also, consider another curvilinear coordinate
system 4!, ... where ¢’s is a function of z’s
ox™
A, (y) = ——A,, 2.1
(4) = G Aun(e) (2.)
a:L,TYL 8.,1;'@
Tinn = . s Lrs 2.2
1) = G 5 (@) (22)

Any Tensor which transforms as (2.2) is called a Covarient Tensor.

2.1 Insights

Covarient Transformation is similar to transformation of a gradient.

o B ozx™ 0¢

a7 = oy oo

Vi) = 2 v ()
oy™
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3 Riemanian and pseudo-Riemanian (Geometry

s = No. of +1 in the Metrict = No. of -1 in the Metric

When t = 0, the Geometry is Riemanian.

When t = 1, the Geometry is pseudo-Riemanian.

4 Metic Tensor

Consider a cartesian coordinate system of d dimensions (x!, 2, ...,z%). Also, consider another curvilinear coordinate

system y', ... where y’s is a function of 2’s

Consider a vector of length ds, then

ds* = (dz*)? + (dz®)* + ... (4.1)
ds* = B, (dz™)? (4.2)

Or,
ds* = S, dz™dz™ (4.3)

But, (4.3) violates or rule that the repeated indices(dummy) must be one in superscript and the other in subscript,
so we define a function called Kronecker Delta.

1 iffm=n
6mn_{ 0 iffm#n (4.4)
Therefore, (4.3) can be rewritten as,
ds® = Sy dz™ da" (4.5)

In Equation 4.5, the Kronecker Delta is the Metric for Cartesian Space.

Now, for metric of a curvilinear space,

ds® = 6mn 8;71? gzt dy" dy® (4.6)
ds® = grndy™dy" (4.7)
where gmn = dmn %27: gz: called the Metric.
4.1 Transformation of the Metric Tensor
ds* = gmn(x) dz™ dz"
4s* = gmnle) 2 92 gy ay 4

oy™ Oy*
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Hence,
ozx™ Ox™
oy Oy®

which is similar to Equation 2.2, Therefore g,,, is a Contravarient Tensor.

Imn(Y) = Gmn()

4.2 About the Metric Tensor

The Metric Tensor defines a small infinitisimal length in a space, has d? elements.

Metric Tensor for Cartesian Coordinates with drei dimensions is

ks

3

3

I
o O =
o = O
_ o O

Suppose, the cross-term(s), gmn where m # n, isn’t zero, then it means that the 2™ and z™ aren’t independent and
the distance equation would include dx™dz™ term.

{Suppose, the cross-term(s), gia, isn’t zero, then it means that the z! and x? aren’t independent and the distance
equation would include dz'dz? term.}

4.3 Inverse of a Matrix Tensor

Inverse of any quantity is defined as, if a matrix is multiplied by its inverse then it should results into the Identity
Matrix.

Identity Matrix is the Kronecker Delta, 4,

m (1 0
=0 1)

(gil)mr 9rs = 6?

Here (g~1)™" is the Contravarient Representation of the Metric Tensor, and can be simply denoted as g"".
gmr 9rs = 6? (49)

Symmetry of the Metric Tensor
For
(911 G12
Jmn = (921 922)
ds® = Gmn dz™ dz"
ds® = g11 de'dx' + (912 + go1) da' dz? + gop da® da?

Interestingly, Susskind said that Since the Metric is supposed to be invertable then it should be symmetric. Check

This....... Symm
Proof
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4.4 Covarient < Contravarient

Interestingly, the same quantity can be represented by covarient tensors and contravarient tensors, they can be inter-
converted using the Metric Tensor.

Vi = Gon V" (4.10)
Vo= g™V, (4.11)

If two Tensors are equal in one coordinate system then they must also be equal in other coordinate systems.

Ton(z) = Whn(x)

The equality of tensors is a Geometric Fact so it doesn’t depend on the coordinates.

Surprisingly, the individual components of tensors needn’t be independent of the coordinate system, I mean, they
depend upon the coordinate system.

5 Flatness

Any space is termed as Flat when there exists a coordinate transformation which makes the metric tensor resemble
the metric of the cartesian coordiantes.

For Example

1. Cylinders are Flat since they can be unfolded into a flat sheet.
2. Cones are Flat except at the top point.
3. Spheres are Not Flat.

6 Metric Tensor For Polar Coordinates

ds® = 8§, pdz™dz™

Transformation Egs.,

x = rcos(d)
y = rsin(0)
Therefore, dr and dy are,
dx = cos(0)dr — rsin(6)do
dy = sin(0)dr + rcos(0)do

The infinitisimal distance, ds? is given by,
ds? = dr? + r*d6?

(1 0
Imn = 0 7"2

It is interesting to note that the Metric Tensor actually depends upon the Radius 7.

Hence, the Metric Tensor in Polar Coordinates is,

Contravarient Representation of the Metric Tensor,

mn_l
9 =\o
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7 Minkowski Space

Minkowski Space is a combination of three-dimentional space coordinates and one-dimentional time coordinates.

The quantity which remains invarient under Lorentz Transformation in Minkowski Space is the proper time, or the
distance.

Fore=1

ds? = dr? = dt? — da? — dy? — d2?

dr? = Guvdxtdx”

1 0 0 0
0 -1 0 0
where g, = Nuv= 00 -1 o0
0 O 0 -1

8 Tensor! Not a Tensor!

8.1 Property

Suppose

In a coordinate system, then also Equation 8.1 will hold in other coordinate systems, although the individual compo-
nents are prone to change.

8.2 Tensor Ordinary and Covarient Derivative

The Derivative of Tensor is not a Tensor!

Let’s Suppose T (x) = %‘Qg is a tensor, then it should behave like a tensor and should trasform w.r.t the equation,

ozx" Ox®
oy oy )

Ton(y) = (8.2)

ox" Ox*
8y7n ayn
ox" 0x° 0V,

= 37 By da° (From the def of T;) (8.3)

0 oV,

oy™ Jdyn

RHS =

Trs(x)

LHS = Tyn(y)

= W) o the def of To.)

oy™

r 8.4
_ 0 (o, (8.4)
oy™ \ Oy™

i ox" n ox" OV,
oyn gym " dym Oyn
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LHS +# RHS

The Equation 8.3 and Equation 8.4 aren’t equal when &%gy% # 0, i.e. for curvilinear coordinate systems.

Hence, our assumption that T,,, is a Tensor is wrong.

Therefore, Ordinary Derivative of a Tensor is not a Tensor.

Actually,
0 oz" OV (y)
Ton = ——V, 8.5
) = 5o o Vol@) + (55)
o 0x"
Let, I = = —
el Lom 8yn 8ym
Vi
Tn(y) = T Vi) + Lo 0) (36)
oym
And, now we can define the Covarient Derivative from Equation 8.6 as,
0
V=17 — 8.7
o+ o (5.7)
where, I} represents Christoffel Symbol.
Hence, the Equation 8.6 becomes,
Tn(y) = ViV (8.8)

Interesting: It is interesting to note here that the covarient derivative of a scaler is same as its ordinary derivative.

8.3 Covarient Derivative of other Sorts of Tensors!

Let us assume the covarient derivative of other sorts of tensors is given by,

V,wy = 0wy + f‘z)\wﬂ (8.9)
Assumptions:
o V,.(¢)=0u0 Covarient Derivative of a scaler is same as its oridinary derivative.
o VT3, = (VT) #)‘M Contraction Commutes.
V(W V) = V20, (wy) + wy0u (V) + VAT yw, +w, T, VP (8.10)

Since Equation 8.10 is covarient derivative of a scaler, it should result into only partial derivative of the scaler,

Vu(w)\V)‘) = V20, (wy) +w, 8, (V?) (8.11)

VAT jw, +w T2, VP =0 (8.12)
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VAT7 jw, = —w, T, V7P (8.13)

But, wy and V* are arbitary and but changing the dummy index,

FO-H)\ = _FUH)\ (814)
Hence from Equation 8.9,
V,wy = 0pwy =T jw, (8.15)
V, = 0.— I‘plM (8.16)
8.4 Covarient Derivative of a Tensor
8,‘Tmn r r
VpTon = oy T — T, Do (8.17)
8.5 Tangent Vector
For a field ¢, the tangent vector is % = 8851 dj:
Similarly, the tangent vector for a Vector V,, is
dVim _ OVip da™
ds  Oxn ds

But, the partial derivative of a Tensor doesn’t results into a tensor, so we replace the partial derivative with covarient
derivative.

AV, dz™
as - VrVmgs

On, expanding using Equation 8.17,
AV, _ OV oy, dz"
ds ayP P ds
Interesting! The Covarient Derivative is equal to the Ordinary Derivative for a Flat Cartesian Space.

More Interesting! The Covarient Derivative is Zero for a vector which doesn’t vary. For Ex, suppose the V, is zero
for a Tangent Vector then the curve must be the straightest curve possible in the space (Underlying ref: Geodesics),
for a Cartesian Geometry the curve will be a straight line.

9 Covarient Derivative of The Metric Tensor

Gmn .
vpgmn = dyp - Fpmgrn - Fpnng (9.1)

For a flat Geometry, Equation 9.1 is Zero.
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Proof,

The Christoffel Symbols for a flat geoemtry are,

1 8 o a o a «
F’Yaﬁ:igva 95+ gmi o
2 oyP dy oy"

RHS of Equation 9.1

2 B oyr oy oy’

Agmn 1 a.09am  0gdp  OGpm g c09drn . 04y OGpn
RHS = " " — 9.2

Since, the Geometry is flat, it implies that d = r and d’' = 1/,

Ogmn 1 dgam | 094p  O9pm v O09arn | O9arp  O9pn
HS = - - r - .
RHS i 2{6 it o7 +aym y" P4 A 7 + Dy ayr’} (9.3)

From the properties of the metric tensor ¢""g,,, = 6",

Therefore, r = n and v’ = m,

RES — 29mn _ 1] 09 Inp  O9p g 9mp _ OYp (9.4)
ayp 2 8yp aym ayn 8yp ayn 8ym
From the properties of the metric tensor g,,,,, = Gnm>
Hence,
VpGmn = RHS =0

10 Custom Geometry

1 0 0 0

‘ 0 at) 0 0 . .
Consider g, = 0 0 a(t) 0 {where a(t) represents a time dependent function.}

0 O 0 a(t)
This metric can represent a time dependent space-time.
For Example,

e For Coordinates, ds* = dr? + (rsin(¢))*d6? This will represent a circle at angle ¢.

e For Coordinates, ds? = dr? + e?"d6? This will represent a horn like space-time.

11 Kronecker Delta Function

Kronecker Delta Function is Delta function in two dimensions.
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11.1 Delta Funciton

5(96—&):{ : ﬁi;g (11.1)

The Delta Function can also be thought as a slope to the Heaviside Function.

Heaviside Function is Basically,

H(z—a)=

{1 iff x>a (11.2)

0 ifz<a
11.2 Kronecker Delta

1 iffi=j
5ij_{ 0 iffi4] (11.3)

11.2.1 Tensor! Not a Tensor!

Form 6,n

5o ox” %

mn — aym 8:[/’"‘ T8
02" Ox"
Oy oy
Not a Tensor!

amn

Form o,

m—aymamsrm_aymaxsm_aymm . m
" Oxr oyn * " - Oz oyn " - dyn o' (y) = 05 (@)

Kronecker Delta of the form 5; is a tensor since it transforms appropiately,

12 Geodesic

Geodesic is a curve where the Covarient Derivative of the tangent vector along the curve is zero.

dzt
Let W= 12.1
et, Vi= (12.1)

, av# | da?
Since K = VAVI E
ve _oveds L, dot

ds ox ds T ds
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dVH idm“ da? dmi" dx?

Using Equation 12.1 = —_— K —
SHmg Bduation T ds ox> ds ds T ds ds
avr  d?z# dz® dz?
= oo = 12.2
ds ds? T ds ds ( )
For, Equation 12.2 is Zero, the curve is the Geodesic.
12.1 Weak Graviational Field
For Weak Graviational Field and everything moves slowly, ofcourse c=1(HaHal)
9y = My, + Small Corrections. .. (12.3)
In this case, 20 ~ 7 ~ t
da® )
S 1 + Small Correction. .. (12.4)
-
Since, the velocity is very small, di ~ 0
T
dvr  d%xt dx® dz’
Using, Equation 12.2 and assuming Geodesic e dj; + ”0072 % =
d?zH
Since, Equation 12.4, i I (12.5)
3 Y 1 YK
Since, T «s = 3 g 00958 T 989ka — Ox9ap (12.6)
p Lo
I = 51 9090 + 90 — 94900 (12.7)
-1 0 0 0
0 1 0 0
Let, M =1 g 0 1 0
0 0 0 1
: d?xt 1
Therefore, Equation 12.5 becomes, T2 = 7(7)5 99,0 + 9940 — 9,900
d?zH 1
P {80%0 + Oy9u0 — 5’M900} (12.8)
) . . d?zt 1
Since, the time dependence is very small, 2 = 3 9,900 (12.9)
. , . . d’z do
Using the Newton’s Equivalent of Acceleration, — = ——
ds? dx
d¢ 1 dgoo
— = - == 12.10
dz 2 dx ( )
On Integration, gy = 2¢+C (12.11)
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13 Curvature: Riemann Tensor, Ricci Tensor

13.1 Commutators

[A,B] = AB — BA (13.1)
Theorem:
[04, f(x) ] V() = {0, f(z) — f()9,} V()
[0,, f(x) ] V(z) = 0, f(z) V(z)— f(2)0,V(x)
[0,, f(x) ] V(z) = V(2)9, f(z) (13.2)
[0.,f(2)] = 0, f(z) (13.3)
Ly - =) = (=) - (Va =V =V T
The First term of the first term is related to dV = a—vdaz”
ozt
while the first term of the second term is related to —dV = —%dm” @ e

or more specifically, the oridinary partial derivative is replaced by
covarient derivative,

The First term is related to  dV = d2/ d2” V, V V @
while the Second term is related to —dV = —dz"dz"V ,V V @ i

5V = dx“dx”{v,, V,-V, vy}v

6V = datdz"[V, , V] (Refer Equation 13.1) (13.4)

13.2 Quest to find The Commutator of Covarient Derivatives

Using the Equation 8.16,

[vy7vu]:vuv;t_vuvl/
= (aV - Fl/) (aﬂ - F/L) - (aﬂ - F/L) (al/ - Fu)
= [0, 1] — [0, ] + I,T, — I,T,

9.T, — 9,T, + T,T, —T,T,
o _ «@ o o 5 o 5
R s = 0ul%5 — 0,15 + 19T — I T4

1) 1
Ral/y,ﬂ == au FaVﬂ - 61, Fa,uﬁ + Faué F pﬂ - Faué F V,B (13.5)

Here Equation 13.5 is the Riemann Curvature Tensor.
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13.3 Riemann Tensor: Another Approach

In parallel transporting a quantity around a loop, the differnetial of the quantity will be proportional to the area of
the loop,

For a 2-dimensional, 24 space,

§V* = da" dz” R,z V"’

Here, Ro‘wﬂ is the Riemann Tensor.

dxt

13.3.1 Insights:

e Two indices of the Riemann Tensor comes from the differential element of the space-time and the other two
comes from the parallel transported vector.

R® 5 is symmetric in p, v and «, 3,

Rf,,. =R"

led —
R wr T pra T vup

Lowering Index:
A
R;Luﬁa = YGax Ruuﬁ

R

afuy

Raﬁuu = = Rﬂam/ = - Ra,@uu = Rﬁauu
Parallel Transport: If we move ACW Anti-Clockwise around the loop,

e If the Deflection (Deficit) is ACW — Positive (+ve) Curvature

o If the Deflection (Deficit) is CW — Negative (-ve) Curvature

13.4 Ricci Tensor

For R* g, Ricci Tensor is defined as,

R, = R (13.6)

Nz pov

Insights:

e Symmetry, can be defined using the Riemann Tensor’s definations,

R, =R,
e R,, = 0is necessary but not sufficient condition for flat space.
® R,5,, = 0is anecessary and sufficient condition for flat space.

13.5 Curvature Scaler: Ricci Scaler
R = g™ R, (13.7)

It can be defined as the trace of the Ricci Tensor.

R = 0, it’s necessary but not sufficient condition for flat space.
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